Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 616(7955): 199-206, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36922595

RESUMO

In oxygenic photosynthetic organisms, light energy is captured by antenna systems and transferred to photosystem II (PSII) and photosystem I (PSI) to drive photosynthesis1,2. The antenna systems of red algae consist of soluble phycobilisomes (PBSs) and transmembrane light-harvesting complexes (LHCs)3. Excitation energy transfer pathways from PBS to photosystems remain unclear owing to the lack of structural information. Here we present in situ structures of PBS-PSII-PSI-LHC megacomplexes from the red alga Porphyridium purpureum at near-atomic resolution using cryogenic electron tomography and in situ single-particle analysis4, providing interaction details between PBS, PSII and PSI. The structures reveal several unidentified and incomplete proteins and their roles in the assembly of the megacomplex, as well as a huge and sophisticated pigment network. This work provides a solid structural basis for unravelling the mechanisms of PBS-PSII-PSI-LHC megacomplex assembly, efficient energy transfer from PBS to the two photosystems, and regulation of energy distribution between PSII and PSI.


Assuntos
Complexos de Proteínas Captadores de Luz , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II , Ficobilissomas , Porphyridium , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/ultraestrutura , Fotossíntese , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/ultraestrutura , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/ultraestrutura , Ficobilissomas/química , Ficobilissomas/metabolismo , Ficobilissomas/ultraestrutura , Porphyridium/química , Porphyridium/enzimologia , Porphyridium/metabolismo , Porphyridium/ultraestrutura , Microscopia Crioeletrônica , Imagem Individual de Molécula
2.
Elife ; 102021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34515634

RESUMO

Phycobilisome (PBS) is the main light-harvesting antenna in cyanobacteria and red algae. How PBS transfers the light energy to photosystem II (PSII) remains to be elucidated. Here we report the in situ structure of the PBS-PSII supercomplex from Porphyridium purpureum UTEX 2757 using cryo-electron tomography and subtomogram averaging. Our work reveals the organized network of hemiellipsoidal PBS with PSII on the thylakoid membrane in the native cellular environment. In the PBS-PSII supercomplex, each PBS interacts with six PSII monomers, of which four directly bind to the PBS, and two bind indirectly. Additional three 'connector' proteins also contribute to the connections between PBS and PSIIs. Two PsbO subunits from adjacent PSII dimers bind with each other, which may promote stabilization of the PBS-PSII supercomplex. By analyzing the interaction interface between PBS and PSII, we reveal that αLCM and ApcD connect with CP43 of PSII monomer and that αLCM also interacts with CP47' of the neighboring PSII monomer, suggesting the multiple light energy delivery pathways. The in situ structures illustrate the coupling pattern of PBS and PSII and the arrangement of the PBS-PSII supercomplex on the thylakoid, providing the near-native 3D structural information of the various energy transfer from PBS to PSII.


Assuntos
Microscopia Crioeletrônica/métodos , Complexo de Proteína do Fotossistema II/fisiologia , Ficobilissomas/fisiologia , Porphyridium/ultraestrutura , Modelos Moleculares , Porphyridium/fisiologia , Conformação Proteica , Tilacoides/ultraestrutura
3.
Nature ; 579(7797): 146-151, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32076272

RESUMO

Photosynthetic organisms have developed various light-harvesting systems to adapt to their environments1. Phycobilisomes are large light-harvesting protein complexes found in cyanobacteria and red algae2-4, although how the energies of the chromophores within these complexes are modulated by their environment is unclear. Here we report the cryo-electron microscopy structure of a 14.7-megadalton phycobilisome with a hemiellipsoidal shape from the red alga Porphyridium purpureum. Within this complex we determine the structures of 706 protein subunits, including 528 phycoerythrin, 72 phycocyanin, 46 allophycocyanin and 60 linker proteins. In addition, 1,598 chromophores are resolved comprising 1,430 phycoerythrobilin, 48 phycourobilin and 120 phycocyanobilin molecules. The markedly improved resolution of our structure compared with that of the phycobilisome of Griffithsia pacifica5 enabled us to build an accurate atomic model of the P. purpureum phycobilisome system. The model reveals how the linker proteins affect the microenvironment of the chromophores, and suggests that interactions of the aromatic amino acids of the linker proteins with the chromophores may be a key factor in fine-tuning the energy states of the chromophores to ensure the efficient unidirectional transfer of energy.


Assuntos
Microscopia Crioeletrônica , Transferência de Energia , Ficobilissomas/química , Ficobilissomas/ultraestrutura , Porphyridium/química , Porphyridium/ultraestrutura , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Proteínas de Algas/ultraestrutura , Modelos Moleculares , Fotossíntese , Ficobilinas/química , Ficobilinas/metabolismo , Ficobilissomas/metabolismo , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Rodófitas/química , Rodófitas/ultraestrutura
4.
Curr Microbiol ; 68(2): 192-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24071812

RESUMO

Early studies on the coloured particles that fell as red rain over southern India identified them as unicellular eukaryotes such as members of the red algae or fungi; however, the results of the present investigation are not consistent with this designation. Using transmission electron microscopy, we have demonstrated significant differences in the ultrastructure when compared with representative species from these other groups. Most notably, the red rain cells show no evidence of typical eukaryotic internal structures such as mitochondria or endoplasmic reticulum. Furthermore, comparisons based on elemental composition using energy-dispersive X-ray analysis, as well as Raman spectral signatures demonstrate significant dissimilarities in their molecular composition. The identity and origins of the red rain cells remain an enigma; however, our findings are more consistent with an unidentified prokaryote, and thus suggest that previous attempts at their identification should be reappraised.


Assuntos
Fungos/ultraestrutura , Chuva/microbiologia , Rodófitas/ultraestrutura , Candida albicans/ultraestrutura , Carbono/análise , Carbono/química , Porphyridium/ultraestrutura , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...